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1. INTRODUCTION

Detection of changes in time series constitutes a very important
branch of applied statistics. There are many methods available (an excel-
lent introduction to the subject is the monograph Basseville and
Nikiforov (1993)), but the problem is by no means solved. For example,
the majority of the change-point detection techniques developed in the
past is parametric and based on simple models. The method we develop
and study is non-parametric and can be applied to analyze time series of
complex structure.

The method is based on sequential application of the so-called
Singular-Spectrum Analysis (SSA), which is a very powerful but relatively
unknown technique of time series analysis (see Sec. 2). SSA incorporates
the elements of classical time series analysis, multivariate statistics,
multivariate geometry, dynamical systems and signal processing, see
Broomhead and King (1986), Danilov and Zhigljavsky (1997), Elsner
and Tsonis (1996), Goljandina et al. (2001), Vautard et al. (1992), and
references therein. The main idea of SSA is performing a singular value
decomposition (SVD) of the trajectory matrix obtained from the original
time series with a subsequent reconstruction of the series. A version of
SSA sufficient for our aims is described in Sec. 2.

In Sec. 3 the change-point detection algorithm is presented. This
algorithm is based on the idea that if at a certain time moment � the
mechanism generating the time series xt has changed, then an increase
in the distance between a subspace of R

M spanned by certain eigen-
vectors of the so–called lag–covariance matrix, and M-lagged vectors
ðxjþ1, . . . , xjþMÞ is to be expected for j � �.

Section 4 briefly describes the ways of choosing the parameters of the
proposed algorithm. There are four parameters in the algorithm in addi-
tion to the two SSA parameters. One of them is the window length N, the
parameter defining the moving window where the SSA decomposition is
performed. Two parameters define the test sample which closeness to the
subspace is tested at each iteration of the algorithm (there are relatively
clear rules for choosing these parameters). The fourth parameter is the
threshold h which is usually chosen to fix the significance level (alterna-
tively, the average run length) at some level.

In Sec. 5 three examples are considered to illustrate the basic features
of the proposed scheme. No comparison with other change-point
algorithms is made in this section; this comparison is delayed until Sec. 7.

In Secs. 6 and 7 results of simulations are reported that are used to
assess the quality of different approximations and compare the proposed
algorithm against some classical change-point detection algorithms.

320 Moskvina and Zhigljavsky



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

The main detection statistic in the proposed algorithm can be represented
as a moving sum of the squared distances to the l-dimensional subspace
that describes the main structure of the series; it can often be associated
with the signal. Under the assumption that the signal is well described by
this subspace and there is no change in the structure of the series, the
residuals are considered as i.i.d.r.v.

In Sec. 6 the behaviour of the error probability of type I is numeri-
cally studied and compared against the test when the detection statistic is
the moving weighted sum of normal random variables. The results show
that for suitably large values of M and T the error probabilities are
reasonably close.

In Sec. 7.1 the behaviour of the error probability of type II is numeri-
cally studied for the hypothesis of a change in mean of a normal distribu-
tion and the main test, when the detection statistic is the moving weighted
sum of squares. It is demonstrated that the algorithm shows the best
performance when Q ¼ 1 and M is slightly smaller than T.

In Sec. 7.2, for the same problem, the error probabilities of type I and
II are displayed for a version of the CUSUM algorithm (which is opti-
mum for this problem in some other sense); the power of the proposed
algorithm is compared with the power of CUSUM. It is found that the
proposed algorithm is approximately three times worse than CUSUM: it
needs three times less observations for CUSUM to detect the change after
it happened than for the proposed algorithm.

The situation changes dramatically when the change is in variance of
the normally distributed variables. In this case the proposed algorithm
becomes six or more times better than the version of CUSUMwe consider.
This is discussed in Sec. 7.3. In many practical problems the changes in
time series reveal in both mean and variance of the series, so a reasonable
change-point detection algorithm should perform well in both situations.

In Sec. 8 we study the error probabilities of the proposed algorithm
for the problem of detecting a change in mean and separately, variance of
normal r.v. by fixing n (instead of considering a moving sum we thus
consider only one time moment). Of course, this assumption significantly
simplifies the problem, and we are able to obtain exact formulae for the
error probabilities. These probabilities are compared against the error
probabilities for the tests based on using the sum of r.v. and absolute
value of sum of r.v. The conclusion about the relative performance of the
tests is very similar to that derived in Sec. 7.

A Cþþ program for change-point detection with graphical represen-
tation of results is written. The program can be downloaded from the
web-site

http://www.cf.ac.uk/maths/stats/changepoint/
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For a comprehensive description of commands, see Help in this
program.

The algorithm described in the present article is a further elaboration
of the SSA-based change-point detection methodology developed in
Goljandina et al. (2001) and, especially, in Moskvina (2001), and
Moskvina and Zhigljavsky (2000). We also refer to these references for
a further discussion of the methodological and statistical issues and to a
discussion on the comparison of the present methodology with the
variety of existing change-point detection algorithms and programs.

2. SINGULAR-SPECTRUM ANALYSIS

2.1. Description of the Algorithm

The basic version of SSA consists of four steps, which are performed
as follows. (See Goljandina et al. (2001) for a more general version of
SSA and various modifications of the basic scheme.)

Step 1. Embedding

Let x1, x2, . . . , xN be a time series, M (M � N=2) be some integer
called ‘lag’ and let K ¼ N �M þ 1: Define the matrix

X ¼ ðxijÞ
M,K
ij¼1 ¼

x1 x2 x3 . . . xK

x2 x3 x4 . . . xKþ1

..

. ..
. ..

. . .
. ..

.

xM xMþ1 xMþ2 . . . xN

0
BB@

1
CCA ð1Þ

and call it the trajectory matrix. Obviously xij ¼ xiþj�1 so that the matrix
X has equal elements on the diagonals i þ j ¼ const. In terms of the
matrix theory, X is a Hankel matrix.

Consider X as a multivariate data with M characteristics and
K ¼ N �M þ 1 observations and let R ¼ XX

T . (We shall call R the
lag–covariance matrix.) Denote the columns of X by X1,X2, . . . ,XK .
These vectors lie in an M-dimensional space R

M .

Step 2. Singular Value Decomposition

Singular value decomposition (SVD) ofR ¼ XX
T provides us with the

collections of M eigen–values, eigen–vectors and principal components.
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Denote by �1, . . . , �M the eigenvalues of R and assume that they are
arranged in the decreasing order, so that �1 � � � � � �M � 0. Let
U1, . . . ,UM be the corresponding orthonormal eigenvectors of R (in
SSA literature they are often called ‘‘empirical orthogonal functions’’
or simply EOFs). Let also d be the number of nonzero eigenvalues �i

and Vi be the eigenvectors of the matrix XT
X (these vectors are some-

times called principal components). We have Vi ¼ X
TUi for i ¼ 1, . . . , d.

As a result of the SVD we obtain a representation X ¼ X1 þ � � � þ Xd ,
where Xi ¼

ffiffiffiffi
�i

p
UiV

T
i are rank-one biorthogonal matrices.

Step 3. Grouping

Split the set of indices f1, 2, . . . , dg into two groups, namely

I ¼ fi1, . . . , ilg and �II ¼ f1, . . . , dg n I ð2Þ

and sum the matrices Xi within each group. The result of the step is the
representation

X ¼ XI þ X �II , where XI ¼
X
i2I

Xi and X �II ¼
X
i =2I

Xi: ð3Þ

Step 4. Reconstruction

Perform the averaging over the diagonals i þ j ¼ const of the
matrices XI and X �II . Applying then twice the one-to-one correspondence
between the series of length N and the Hankel matrices of size M�K , we
obtain two series (denote them by fztg and f"tg) and the SSA decomposi-
tion of the original series; that is, a decomposition of fxtg into a sum of
two series

xt ¼ zt þ "t: ð4Þ

Here the series fztg (obtained from the diagonal averaging of XI ) can
often be associated with signal and the residual series f"tg with noise.

3. CHANGE-POINT DETECTION

3.1. The Main Idea

The selection of the group I of l � rankX indices on the third step of
the basic SSA algorithm implies the selection of l eigen-vectors, which
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determine an l-dimensional subspace in the M-dimensional space R
M of

vectors Xj.
The distance between the vectors Xj ð j ¼ 1, . . . ,KÞ and this

l-dimensional subspace canbe reduced to rather small values (it is controlled
by the choice of I ). It should stay reasonably small for Xj, j > K , if the
time series fxtg

N
t¼1 is continued for t > N and there is no change in the

mechanism generating xt.
The proposed change-point detection algorithm is based on the

observation that if at a certain time moment N þ � the mechanism gen-
erating xt ðt � N þ �Þ has changed, then an increase in the distance
between the l-dimensional subspace and vectors Xj for j � K þ � is to
be expected.

To make the change-point detection algorithm sequential and to
accommodate it to a slow change in the time series structure, to outliers
and to the case of multiply changes, for each n we apply SVD to the
trajectory matrix computed in a time interval ½nþ 1, nþN� of length N
rather than to the trajectory matrix (1). Here n is the iteration number
and N is the length of the time interval where the trajectory matrix is
computed.

3.2. Description of the Algorithm

Let x1, x2, . . . be a time series and N,M, l, p and q be fixed integers so
that l < M � N=2 and 0 � p < q. For each n ¼ 0, 1, . . . we execute the
following operations.

Stage 1. Construction of an l-Dimensional Space

At this stage we perform the first three steps of the SSA algorithm in
the time interval ½nþ 1, nþN �:

1. Construct the trajectory matrix

X
ðnÞ
B ¼

xnþ1 xnþ2 xnþ3 . . . xnþK

xnþ2 xnþ3 xnþ4 . . . xnþKþ1

..

. ..
. ..

. . .
. ..

.

xnþM xnþMþ1 xnþMþ2 . . . xnþN

0
BBBBBB@

1
CCCCCCA

ð5Þ
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where K ¼ N �M þ 1 (in the change–point detection algo-
rithm these matrices are called base matrices). The columns of
the matrix X

ðnÞ
B are the vectors

X
ðnÞ
j ¼ ðxnþj, . . . , xnþjþM�1Þ

T with j ¼ 1, . . . ,K :

2. Perform the SVD of the lag-covariance matrix Rn ¼ X
ðnÞ
ðX

ðnÞ
Þ
T .

This gives us a collection of M eigenvectors.
3. Select a particular group I of l < M of these eigenvectors; this

determines an l-dimensional subspace Ln, I of the M-dimensional
space R

M .

Stage 2. Construction of the Test Matrix

Construct the matrix X
ðnÞ
T of size M�Q, whose columns are the

vectors X
ðnÞ
j ð j ¼ pþ1, . . . , pþQÞ; that is,

X
ðnÞ
T ¼

xnþpþ1 xnþpþ2 xnþpþ3 . . . xnþq

xnþpþ2 xnþpþ3 xnþpþ4 . . . xnþqþ1

..

. ..
. ..

. . .
. ..

.

xnþpþM xnþpþMþ1 xnþpþMþ2 . . . xnþqþM�1,

0
BBB@

1
CCCA

where q ¼ pþQ. This matrix is called test matrix.

Stage 3. Computation of the Detection Statistics

The detection statistics are:

. Dn, I , p, q, the sum of squared Euclidean distances between the vec-
tors X

ðnÞ
j ð j ¼ pþ 1, . . . , qÞ and the l� dimensional subspace Ln, I

of R
M (see Eq. (8) for the explicit formula of Dn, I , p, q).

. Sn ¼
~DDn, I , p, q=�n, I , the normalized sum of squares of distan-

ces. Here

~DDn, I , p, q ¼
1

MQ
Dn, I , p, q ð6Þ

(the sum of squared distances is normalized to the number of
elements in the test matrix) and �n, I is an estimator of the nor-
malized sum of squared distances ~DDj, l, p, q at the time intervals
½ j þ 1, j þm� where the hypothesis of no change can be accepted.
We use �n, I ¼

~DDm, I , 0,K where m is the largest value of m � n so
that the hypothesis of no change is accepted.
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. The CUSUM-type statistic

W1 ¼ S1, Wnþ1 ¼ ðWn þSnþ1 �Sn � 	=
ffiffiffiffiffiffiffiffiffi
MQ

p
Þ
þ, n� 1,

where ðaÞþ ¼ maxf0, ag for any a 2 R and 	 is a small nonnega-
tive constant (shift down in case of the null hypothesis H0), a
reasonable value of 	 is 	 ¼ 1=ð3

ffiffiffiffiffiffiffiffiffi
MQ

p
Þ, see Moskvina (2001).

3.3. The Decision Rule

Large values of Dn, I , p, q, Sn and Wn indicate on a change in the
structure of the time series. The first point with non-zero value of Wn

before this statistic has reached a high value should be considered as an
estimator of the change-point. The algorithm announces the structural
change if for some n we observe Wn > h with the threshold

h ¼
2t

MQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
Qð3MQ�Q2 þ 1Þ

r
, ð7Þ

where t
 is the ð1� 
Þ -quantile of the standard normal distribution
(see Sec. 8.1 and formulae (23)–(24)). Under the assumptions of the asymp-
totic normality of Dn, I , p, q (this holds when the window width N and the
lag M are large enough) and that the time series is a sum of a signal
(which is recovered by the SSA decomposition) and white noise, for this
decision rule the probability of a false alarm for a fixed n is approximately
0.001 (see Moskvina (2001) and Moskvina and Zhigljavsky (2000)) for
the statistical aspects of the procedures of this kind).

3.4. Computational Details

The way of constructing the base and test matrices is illustrated
in Fig. 1.

Consider computation of the distances between the vectors X
ðnÞ
j and

the space Ln, I . Let the group I be I ¼ fi1, . . . , ilg: Then the space Ln, I is
spanned by the eigenvectors Ui1 , . . . ,Uil . Since the eigenvectors are
orthonormal, the square of the Euclidean distance between an M-vector
Z and the subspace Ln, I spanned by the l eigenvectors Ui1

, . . . ,Uil
, is just

kZk
2
� kUTZk

2
¼ ZTZ � ZTUUTZ
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where k � k is the usual Euclidean norm and U is the M � l-matrix with
the columns Ui1

, . . . ,Uil
. Therefore

Dn, I , p, q ¼
Xq
j¼pþ1

ððX
ðnÞ
j Þ

TX
ðnÞ
j � ðX

ðnÞ
j Þ

TUUTX
ðnÞ
j Þ: ð8Þ

4. CHOICE OF PARAMETERS

Significant changes in time series structure will be detected for any
reasonable choice of parameters. To detect small changes in noisy series a
tuning of parameters may be required. Below you can find some recom-
mendations concerning this tuning.

4.1. Parameters of the SSA Algorithm: Lag M and Group I

The parameters of the SSA algorithm are the lag M and the group I.
To choose them, we have to follow standard SSA recommendations. (For
an extensive discussion of this problem we refer to Goljandina et al.
(2001).) The separability characteristics (including the w-correlation)
play a very important role here. One of the separability characteristics
is the so-called w-correlation which is defined as

� ¼

PN
t¼1 wtzt"tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1 wtz
2
t

PN
t¼1 wt"

2
t

q , ð9Þ

where wt are the weights such that wt ¼ wM, 0,K ðtÞ with the function
wM, 0,K ðtÞ defined in Eq. (22).

Figure 1. Construction of the base and test matrices.
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In an ideal situation, the components in Eq. (4) must be ‘‘indepen-
dent.’’ Achieving ‘‘independence’’ (or ‘‘separability’’) of the components
zt and "t in the SSA decomposition Eq. (4) is of prime importance in SSA.

If N is not very large, which should be regarded as the most inter-
esting case in practice, the main recommendation is to choose
bM ¼ N=2c and I ¼ f1, . . . , lg, where l is such that the first l components
provide a good description of the signal and the lower M � l components
correspond to noise.

To choose l, it is advised to make a visual inspection of the SSA
decomposition of the whole series and some large parts of the series
before applying the change-point detection algorithm. Alternatively, if
the problem is really sequential and a preliminary study of the time
series is not possible, then the recommendation is to use all the visual
SSA tools in the first part of the series to choose l.

If l is too small (underfitting), then we miss a part of the signal and
therefore we can miss a change (which may occur in the underestimated
components). Alternatively, if l is too large (overfitting), then we approx-
imate a part of noise together with the signal; therefore, finding a change
in signal becomes more difficult.

4.2. Length and Location of the Test Sample: p, q

A general recommendation is to choose p � K. In this case the col-
umns of the base and test matrices are generally different. In this case the
algorithm is more sensitive to changes than its more economical version
(in the sense of the number of xt involved at each iteration) when p < K
and thus some of the columns of the base and test matrices coincide.

To get a smooth behaviour of the test statistics Dn, I , p, q we need to
select q slightly larger than p. If the difference q� p is too large, then the
behaviour of Dn, I , p, q becomes too smooth; this happens, for example,
when p ¼ 0 and q ¼ K (that is, the base and test matrices coincide).

4.3. Window Width N

The choice of N depends on what kind of structural changes we are
looking for. If we allow small gradual changes in the time series then we
could not take N very large. Also, if N is too large, then we could either
miss or smooth out all the changes in our time series. Alternatively, if we
take N small, then an outlier could be recognized as a structural change
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(concerning detecting the outliers, see Example 3 of Sec. 5). A general rule
is to choose N reasonably large.

4.4. Centering

If the trend of original series fxtg contains either a constant or a
linear component which influence we would prefer to neglect, then it
can be worthwhile to make centering of the base and test matrices
(that is, to subtract row and perhaps column averages from the elements
of the matrices). The effect of this operations on the behaviour of the
quadratic form Dn, I , p, q is studied in Moskvina (2000).

5. NUMERICAL EXAMPLES

In this section we present numerical examples illustrating the behav-
ior of the procedure (many more examples can be found in Moskvina
(2001)). Note, that in the graphs we plot the normalized detection statis-
tics (6) shifted on qþ ~MM�1 points to the right to align the point of the
first increase of these statistics and the change-point. Thus, we plot the
values of

~DDn0, p, q ¼
1

MQ
DnþMþq�1, p, q:

Example 1. (Airlines data, Fig. 2.)
This celebrated data, see for example, Box and Jenkins (1970), give

logarithms of monthly totals (in thousands) of international airline pas-
sengers for January 1949–December 1960. There are only 144 data points
so we have selected a rather small N, namely N ¼ 36. (For the sake of
precision of SSA decompositions N has to be proportional to the main
period which is 12.) We have also taken M ¼ N=2 ¼ 18 and p ¼ 18,
according to the recommendations of Sec. 4, and q ¼ 30 (value q ¼ 36
would be a little too large: there is not enough data). To choose l, we have
made the standard SSA decomposition of the whole series with M ¼ 18.
The results of the decomposition are displayed in Fig. 2 (a): the main trend
is described by the 1st and 6th eigenvectors (principal components), the
main period (12-months) is described by the 2nd and 3rd components and
the second main period (6-months) is represented by the 4th and 5th prin-
cipal components. (The series reconstructed from these two components is
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shifted down, which results in the second zero in the plot in Fig. 2(a).)
Figure 2(b) shows that the test statistic clearly indicates on two time inter-
vals where changes in trend have possibly occurred (alternatively, this may
indicate an additional five-year cycle in the data). The threshold h is com-
puted according to Eq. (7) with t
 ¼ 1:2815 (this corresponds to 0.9-quan-
tile of the standard normal distribution), its value is h ¼ 0:540.

Figure 2. Logarithm of airline passenger numbers. Parameters: N ¼ 36,

M ¼ 18, Q ¼ 12, PC: 1–6.
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Example 2. (A change in a correlation structure, Fig. 3.)
In this example we have two-dimensional series fe

ð1Þ
t , e

ð2Þ
t g with inde-

pendent vectors

e
ð1Þ
t

e
ð2Þ
t

 �
�

N 0, �2I2
� �

for t ¼ 1, . . . , 200

N 0, �2�
� �

for t ¼ 201, . . . , 400,

(
ð10Þ

where � ¼ 1,

I2 ¼
1 0
0 1

 �
and � ¼

1 0:5
0:5 1

 �
:

The individual series e
ð jÞ
t ð j ¼ 1, 2Þ do not have changes, see Fig. 3(a,b);

the change occurs in the correlation structure of the series. To detect this
change, we consider the sum e0t ¼ e

ð1Þ
t þ e

ð2Þ
t (see Fig. 3(c)) and test a

change in it.
The modified CUSUM test

g0k ¼
Xk
i¼1

ðe
ð1Þ
i þ e

ð2Þ
i Þ

and normalized moving sum test with m ¼ 100

~gg0k ¼
1

m

Xkþm

i¼kþ1

e
ð1Þ
i þ e

ð2Þ
i

� �

do not reflect the change, see Fig. 3(d,e). However, the normalized
moving sum of squares

gk ¼
1

2m�2

Xkþm

i¼kþ1

e
ð1Þ
i þ e

ð2Þ
i

� �2
ðm ¼ 100Þ does reflect the change, see Fig. 3(f ). Note that this algorithm
corresponds to the version p ¼ N and q ¼ N þ 1 with M ¼ 100, of our
algorithm.

The result of this example can be explained as follows. The change-
point model Eq. (10) is reduced to a change in variance for the series
e
ð1Þ
i þ e

ð2Þ
i (i ¼ 1, . . . , 400) which is a sequence of independent normal r.v.

with zeromean and variances 2�2 for i � 200 and 3�2 for i > 200. It is well-
known, however (see e.g., Basseville and Nikiforov (1993)), that the like-
lihood ratio statistics for this problem is the sum of squares of ðe

ð1Þ
i þ e

ð2Þ
i Þ

2.

Example 3. (Presence of an outlier, Figs. 4–5.)
Assume that we have an outlier at a point � and the base and

test matrices in the change-point detection algorithm do not intersect
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Figure 3. Model of Example 2.
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(that is, p � N). In this case the outlier does not appear in both matrices
simultaneously and the behavior of the detection statistic Dn, p, q is easy to
describe. Indeed, the statistic starts to increase at the moment when the
outlier appears in the test matrix for the first time, i.e. around
� ¼ nþ qþM � 1 (see Fig. 1) and grows until the outlier appears in
the matrix the same number of times, namely ~MM ¼ minfM,Qg. Then
the statistic becomes stable during ~QQ ¼ maxfM,Qg steps and then it
starts to decrease (since the number of appearances of the outlier in the
test matrix decreases). Thus,

. The statistic increases for ð��q� ~MMþ1Þ � n � ð��qÞ;

. It stabilizes at a high level for ð��qÞ � n � ð��p� ~MMÞ;

. The statistic decreases for ð��p� ~MMÞ � n � ð��p�1Þ.

Expectation of ~DDn, p, q (without averaging) at iteration n is
E ~DDn, p, q ¼ 1þ ððkðA2

� 1ÞÞ=MQÞ, where 1�k� ~QQ is the number of times
the outlier appears in the test matrix at iteration n, A is the value of the
outlier (assuming that the signal has being subtracted). In particular, if
n 2 ½� � q, � � p� ~MM� then k ¼ ~QQ and therefore the expected value of the
detection statistics at the highest level is E ~DDn, p, q ¼ 1þ ðA2

� 1Þ= ~MM.
An example of a time series with outlier is shown in Fig. 4. In this

figure the sequence feig consists of i.i.d. normal random variables, i.e.,
ei � Nð0, 1Þ for each i ¼ 1 . . . 200. The outlier is at point i ¼ 100 and its
value is A ¼ 8. The detection statistic ~DDn, p, q (see Fig. 5) is obtained by
using the algorithm with parameters N ¼ 50, M ¼ 25, p ¼ 26,
K ¼ N �M þ 1 ¼ 26 and Q ¼ 25.

6. NUMERICAL APPROXIMATIONS FOR THE

ERROR PROBABILITIES

6.1. Performance Characteristics

In this section results of simulations are reported that are used to
assess the quality of different approximations and compare the proposed
algorithm against some classical change-point detection algorithms.

As the quality characteristics we consider the error probabilities of
type I and II and the corresponding power function. We do not consider
standard in sequential change-point detection theory criteria such as
expected run length and average time to false detection. The reason is
that for the detection statistics like the moving sum (our detection sta-
tistic is the moving weighted sum of squares) it is more natural to use the
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Figure 5. The detection statistic ~DDn, p, q, N ¼ 50, M ¼ 25, p ¼ 26, q ¼ 51.

Figure 4. Gaussian sequence with an outlier.
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approach which can be called ‘‘reliable detection’’ (see Bakhache and
Nikiforov (2000)). In this approach two time interval lengths, say T0

and T1, are fixed and the following two probabilities are considered:

sup
k�1

PrfSn � h for at least one n ¼ kþ 1, . . . , kþ T0 jH0g ð11Þ

sup
��1

PrfSn < h for all n ¼ � þ 1, . . . , � þ T1 jH1ð�Þg ð12Þ

Here Sn is the detection statistic (like moving sum), h is the threshold, H0

is the null-hypothesis of no change, H1ð�Þ denotes the hypothesis that the
change occurred at time �, T1 is the maximum possible delay in detecting
the signal, T0 is the interval of time where we monitor the probability of
false alarm. Supremum in both Eqs. (11) and (12) disappears if the sta-
tistics Sn form a stationary sequence under the null hypothesis; this is the
case in our study as soon as the change does not happen too soon (we
must have time to form the first sum of squares while there is no change).

The probabilities (11) and (12) will be called the error probabilities of
type I and type II, respectively. A natural choice of T0 and T1 is
T0 ¼ T1 ¼ T , say; we often implicitly assume this while studying the
error probabilities of type II (and the corresponding power function).
In these cases it is reasonable to assume that T is not very large, respec-
tively to M. In most cases, however, we study only the error probabilities
of type I (which defines the significance level of the test) and can assume
that T ¼ T0 is much larger than M.

Formally, if the null hypothesis is H0 and the alternative is H1, then
the error probability of type I (the probability of false alarm) is


I ¼ Prfreject H0 jH0g ¼ PrfS � h jH0g, ð13Þ

and the error probability of type II (the probability of missing the
signal) is


II ¼ Prfaccept H0 jH1g ¼ PrfS < h jH1g, ð14Þ

where S is a detection statistic and the test here is defined as S6
H0

H1
h with

S < h meaning that H0 is accepted. In many cases the hypothesis H0 is
simple but the hypothesis H1 is complex and parametrized by some para-
meter  (with  ¼ 0 corresponding to the hypothesis H0). Then the error
probability 
II depends on , that is, 
II ¼ 
II ðÞ. The error probabilities
are usually expressed in the form of the power function

�ðÞ ¼ 1� 
II ðÞ ¼ PrfS � h jg, ð15Þ

with �ð0Þ ¼ 
I .

SSA for Change-Point Detection 335



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

6.2. Null Hypothesis Model

The underlying assumption of the SSA technique in general and the
proposed change-point detection algorithm in particular is the assump-
tion that the initial time series is well approximated by the series zt, the
solution of the finite-difference equation:

zt ¼ a1zt�1 þ � � � þ adzt�d ð16Þ

of some order d with some coefficients a1, . . . , ad , that is, by a process of
the form

zt ¼
X
k


kðtÞe
�kt sinð2�!ktþ ’kÞ : ð17Þ

(here 
kðtÞ are polynomials in t, �k, !k and ’k are arbitrary parameters)
with a small number of terms. That is, we assume that

xt ¼ zt þ et ð18Þ

where et is a noise process and zt satisfies the finite-difference equation

zt ¼ a1zt�1 þ � � � þ adzt�M ð19Þ

with some coefficients a1, . . . , aM and certain initial conditions. (Note that
some of the coefficients ai can be zero and thus the order of the finite-
difference Eq. (19) can be smaller than M.) The noise can be either
random or deterministic, but it must have the property that its approx-
imation by the solutions of the finite-difference equations is poor (white
noise certainly satisfies this assumption).

Application of SSA with lag M at time intervals ½nþ 1, nþN�

approximately recovers the model (18). That is, we get

xt ¼ z
ðnÞ
t þ e

ðnÞ
t , ð20Þ

where z
ðnÞ
t is the SSA approximation for zt, the solution of Eq. (19).

Asymptotically, when N ! 1, M ! 1, and the noise et is an
ergodic random process with finite variance, we obtain that these two
processes are weakly asymptotically separable in the sense that
w-correlations defined in Eq. (9) tend to 0 (see Goljandina, et al. (2001),
Chapter 6 and Corollary 6.1; Danilov and Zhigljavsky (1997), p. 221).
In computing the threshold h we assume the following null-hypothesis:

1. The model Eq. (18) is valid and there is no change in parameters
of the Eq. (19),

2. z
ðnÞ
t ¼ zt for all n and t,

336 Moskvina and Zhigljavsky



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

3. Either M or Q ¼ q� p tend to infinity,
4. et ¼ ent is a sequence of i:i:d:r:v:, the variance �2 of et can be

unknown.

Note, that from theoretical point of view, values of p and q are not
important. The important quantity is the difference Q ¼ q� p. For sim-
plicity let us assume M � Q (if M � Q then all the formulas can be
obtained substituting M $ Q).

The above assumptions imply that in the change-point detection
algorithm we have at iteration n

Dn, I , p, q ¼
X
t

wM, nþp, nþqðtÞe
2
t , ð21Þ

where (for Q � M)

wM, p, qðtÞ ¼

t� p for p < t � q,
Q for q < t � M þ p,
qþM � t for M þ p < t � M þ q,
0 otherwise:

8>><
>>: ð22Þ

The form of the weight function wM, p, qðtÞ is caused by the structure of the
trajectory matrix Eq. (5), where x1 appears once, x2 – twice, etc.

Obviously, Eq. (21) is a quadratic form eTBe, where e ¼
ðe1, e2, . . . , eNÞ

T and B ¼ BðM, n, p, qÞ is a diagonal matrix with diagonal
elements Btt ¼ wM, nþp, nþqðtÞ.

In Moskvina (2001; 2000) the distribution of the quadratic form
Dn, I , p, q is studied and the moments of this quadratic form, EDn, I , p, q

and varðDn, I , p, qÞ, are calculated for the general case when the averaging
of the base matrix is possibly performed. In the simple case of no averaging
we have

EðeTBeÞ ¼ �2trB ¼ MQ�2, ð23Þ

varðeTBeÞ ¼ 2�4trB2
¼ 2�4

1

3
Q ð3MQþ 1�Q2

Þ ðQ � MÞ: ð24Þ

Standardizing the random variable Dn, I , p, q ¼ eTBe and taking into
account its asymptotic normality (when M or Q tend to infinity), which
is a consequence of (iii), we get asymptotically

Dn, I , p, q � EDn, I , p, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDn, l, p, qÞ

p � Nð0, 1Þ : ð25Þ
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6.3. Numerical Approximation of the Error

Probabilities of Type I

In this section we provide results of simulations that illustrate the
quality of approximations of the error probabilities of first and second
kind for the moving squared distances by the corresponding probabilities
for moving sums of normal random variables. In each reported case we
performed 10 000 simulations of the corresponding statistic; the results
presented are the values of the corresponding proportions.

Sum of Squared Distances

According to the results of the previous section, one of the main
detection statistics in the SSA-based algorithm can be represented as a
moving sum of the squared distances to the l-dimensional subspace that
describes the main structure of the series; it can often be associated with
the signal. Under the assumption that the signal is well described by this
subspace and there is no change in the structure of the series, the residuals
can often be considered as i.i.d.r.v. Thus, the moving squared distance
is considered as a moving weighted sum of squares of these random
variables.

Let us study the change-point detection algorithm under the null
hypothesis (see the previous section). Assume that the noise fetg consists
of i.i.d.r.v. with Eet ¼ 0 and varðetÞ ¼ �2. We shall also assume that M is
large enough so that �n, which is a consistent estimate of E�n ¼

EDn, p, q ¼ MQ�2, is close enough to MQ�2. Using the Slutski theorem
(see Rao (1973), p.122) we then can replace �2 by �n=MQ (this does not
affect the asymptotic distribution of Dn, p, q). Thus we can assume �2 ¼ 1,
i.e. that et are normal i.i.d. random variables Nð0, 1Þ.

Studying the behavior of Dn, p, q is obviously equivalent to studying
the behaviour of the sequence of random variables defined by

�n ¼
Dn, p, q � EDn, p, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðDn, p, qÞ
p ðn ¼ 0, . . . ,T �NÞ: ð26Þ

Indeed, the event that �n reaches the threshold h (i.e. �n � h for some n) is
equivalent to

Dn, p, q � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDn, p, qÞ

q
þ EDn, p, q ¼ H:
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For simulations we use the standardized random quadratic form Eq. (26).
Using formulae (23) and (24) we get EDn, p, q ¼MQ, and varðDn, p, qÞ¼

2Qð3MQ�Q2
þ 1Þ=3. Thus, we simulate the random variables

�n ¼

PMþQ�1
i¼1 wM, pþn, qþnðiÞe

2
i �MQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Qð3MQ�Q2 þ 1Þ=3
p :

The behavior of the error probability of type I as a function of T and h
for the sequence of r.v. �n (n ¼ 0, . . . ,T �N) is shown in Fig. 6.

Sum of Normal Random Variables

Consider the sequence of random variables

�0n ¼
D

0
n, p, q � ED0

n, p, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðD0

n, p, qÞ
p ,

where D
0
n, p, q ¼

P
t wM, nþp, nþqðtÞet (t ¼ 1, . . . ,T) and et are normal i.i.d.

Nð0, �2Þ. The mean and variance of the random variable �0n are

E�n ¼ E�0n ¼ 0 and varð�nÞ ¼ varð�0nÞ ¼ 1:

Figure 6. The error probabilities of type I. Sum of squared distances and sum of

normal r.v. M=300, Q=300.
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Straightforward calculations give

ED0
n, p, q ¼ 0 and varðD0

n, p, qÞ ¼
�2Q

3
ð3MQ�Q2

þ 1Þ:

Therefore, we simulate the random variables

�0n ¼

PMþQ�1
i¼1 wM, p, qðtÞeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qð3MQ�Q2 þ 1Þ=3
p ,

where ei � Nð0, 1Þ for any i.
The error probabilities 
I of type I (see Eq. (13)) (i.e. the probability

of the event that the algorithm indicates a change when there is not one)
is illustrated in Fig. 6 for M ¼ Q ¼ 300. This figure shows that the error
probabilities of type I for sums of distances and squared distances are
close for reasonably large values of parameters M and Q.

7. NUMERICAL APPROXIMATION FOR THE POWER

FUNCTION AND COMPARISON OF ALGORITHMS

In first part of this section we consider the problem of testing between
two hypotheses:

H0 :  ¼ 0, for any t 2 ½0,T � ð27Þ

and the alternative of the change in mean:

H1 :
 ¼ 0, 0 � t � �,
 ¼ 1, � < t � T :

�
ð28Þ

7.1. SSA-Based Algorithm

Let us consider a Gaussian sequence with change in mean and con-
stant variance �2 ¼ 1. Fig. 7 show the behaviour of the power function
�ðaÞ (see Eq. (15)) for the proposed SSA-based change-point detection
algorithm with different sets of parameters. The range of change in mean
is from a ¼ 0 till a ¼ 0:7 is indicated by a in the legend of each graph.
Note, that the black lowest curve corresponding to a ¼ 0 is 
I , the error
probability of type I.

To compare the power function of the test �ðaÞ ¼ 1� 
II for different
parameters M and Q let us fix the error probability of type I to be
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I ¼ 0:100 and T 0
¼ T �N ¼ 100, where N ¼ M þQ� 1. Note, that we

need the first N observations to build the quadratic form

D0, 0,Q ¼
XN
i¼1

wM,O,QðiÞe
2
i

(see Eq. (21)) on the first step and then T 0 steps to test the algorithm.
Table 1 demonstrates probabilities of reaching the threshold h for the
sum of squares of the normal r.v. under the condition 
I ¼ 0:100 with
different M and Q. The largest value of the power function is reached at
M ¼ 90 and Q ¼ 1.

7.2. CUSUM Algorithm

Cumulative sum detection statistic (CUSUM) for Gaussian sequence is

gk ¼ Sk � min
1�i�k

Si6
H0

H1
h,

where

Sk ¼
�

�2

Xk
i¼1

xi � 0 �
�

2

 �
, � ¼ 1 � 0:

Figure 7. Power functions of the SSA-based algorithm: change in mean,

M ¼ 90, Q ¼ 1.
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This statistic depends on parameters 0 and 1, which are usually
unknown. Let us consider the following version of the CUSUM algo-
rithm (for details see Basseville and Nikiforov (1993))

g 0
k ¼ S 0

k � min
1�i�k

S 0
i6

H0

H1
h0, where S 0

k ¼
1

�2

Xk
i¼1

xi: ð29Þ

To compare our and the CUSUM algorithm (29) consider the probability
of reaching the threshold h by both algorithms without signal (the error
probability of type I, see Eq. (13)) and with signal (the power function
(15)) at time T ¼ 100. The largest value of the power function for our
algorithm is with M ¼ 90, Q ¼ 1. Let us again fix the error probability of
type I to be 
I ¼ 0:100 for T ¼ 100. Using the simulation we obtain that
the value of the threshold is h ¼ 18.

Table 2 shows the probabilities of reaching this threshold with dif-
ferent T for the value of signal a ¼ 0:0, 0:1, . . . , 1:0; see also Fig. 8. The
bold font numbers show approximate matches with the column
M ¼ 90, Q ¼ 1 of Table 1. As we can see, the CUSUM algorithm is
about three times better than the SSA-based algorithm: indeed, the prob-
ability which we obtain with our algorithm for 100 steps can be reached
by the CUSUM algorithm for � 36 steps.

The power functions for these two tests are displayed in Fig. 9. The
power function of the proposed (SSA-based) algorithm is presented with
parameters M¼90 and Q¼1, where the power function is maximum (see
Table 1). The power function of the CUSUM test shown in the figure is
presented for T ¼ 36. The thresholds for the tests have been chosen so
that the values of the power functions are close (� 0.1) for a ¼ 0.

Table 1. Probabilities of reaching the threshold h for the SSA-based algorithm:

change in mean.

M, Q 50, 1 80, 1 80, 10 90, 1 90, 10 100, 1 100, 10 50, 50 100, 100

a¼ 0.1 0.114 0.108 0.107 0.108 0.109 0.110 0.108 0.107 0.103

a¼ 0.2 0.144 0.141 0.133 0.140 0.136 0.139 0.135 0.132 0.118

a¼ 0.3 0.213 0.209 0.201 0.206 0.196 0.204 0.197 0.187 0.147

a¼ 0.4 0.337 0.329 0.322 0.330 0.315 0.326 0.311 0.293 0.202

a¼ 0.5 0.505 0.513 0.508 0.520 0.495 0.509 0.491 0.450 0.291

a¼ 0.6 0.702 0.722 0.716 0.728 0.707 0.720 0.702 0.656 0.436

a¼ 0.7 0.867 0.887 0.884 0.892 0.881 0.888 0.875 0.834 0.619

a¼ 0.8 0.958 0.971 0.969 0.972 0.969 0.971 0.966 0.948 0.788

a¼ 0.9 0.991 0.995 0.995 0.996 0.995 0.994 0.995 0.988 0.914

a¼ 1.0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.974
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7.3. Error Probabilities When the Change Is in Variance

Let us consider a Gaussian sequence with zero mean and change in
variance �2. An example of the behaviour of the power function �ðaÞ for
the proposed SSA-based change-point detection algorithm is displayed in
Fig. 10. The range of change of the standard deviation is from 1:0 till 1:5,

Table 2. Probabilities of reaching the threshold h¼ 18 for the CUSUM

algorithm: change in mean.

T¼ 35 T¼ 36 T¼ 37 T¼ 40 T¼ 45 T¼ 50

a¼ 0.1 0.012 0.014 0.016 0.024 0.039 0.061

a¼ 0.2 0.044 0.047 0.059 0.085 0.129 0.186

a¼ 0.3 0.127 0.143 0.158 0.216 0.314 0.419

a¼ 0.4 0.283 0.316 0.341 0.430 0.568 0.683

a¼ 0.5 0.505 0.538 0.571 0.667 0.794 0.878

a¼ 0.6 0.716 0.749 0.779 0.853 0.928 0.967

a¼ 0.7 0.873 0.896 0.914 0.954 0.982 0.993

a¼ 0.8 0.960 0.968 0.974 0.989 0.996 0.998

a¼ 0.9 0.989 0.992 0.994 0.998 0.999 0.999

a¼ 1.0 0.998 0.998 0.999 0.999 0.999 1

Figure 8. Power functions for the CUSUM test: change in mean, T ¼ 36.
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Figure 9. Power functions of the SSA-based and CUSUM tests as a function of a.

Figure 10. Power functions for the SSA-based algorithm: change in variance,

M ¼ 90, Q ¼ 1.
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it is indicated by � in the legend of each graph. The black lowest curve
corresponding to � ¼ 1:0 is 
I , the error probability of type I.

Table 4 shows the probabilities of reaching this threshold with dif-
ferent T for the value of standard deviations � ¼ 1:0, 0:05, . . . , 1:5; see
also Fig. 11. Let us again find numbers in this table approximate match-
ing with the column M ¼ 90, Q ¼ 1 of Table 3. As one can see, the
CUSUM (29) algorithm is now about six times worse than the
SSA-based algorithm: indeed, the probability which we obtain with our
algorithm for 100 steps can be reached by the CUSUM algorithm for
� 600 steps. As it was mentioned in Example 2, the likelihood ratio test

Table 3. Probabilities of reaching the threshold h for the SSA-based algorithm:

change in variance.

M, Q 80, 1 80, 10 90, 1 90, 10 100, 1 100, 10 100, 100

�¼ 1.05 0.236 0.227 0.232 0.223 0.227 0.219 0.150

�¼ 1.10 0.441 0.425 0.441 0.427 0.437 0.425 0.240

�¼ 1.15 0.665 0.651 0.670 0.653 0.655 0.647 0.379

�¼ 1.20 0.837 0.826 0.837 0.827 0.826 0.817 0.535

�¼ 1.25 0.933 0.928 0.934 0.927 0.931 0.918 0.695

�¼ 1.30 0.974 0.973 0.977 0.974 0.979 0.968 0.812

�¼ 1.35 0.992 0.992 0.992 0.991 0.992 0.990 0.896

�¼ 1.40 0.998 0.998 0.998 0.997 0.998 0.997 0.951

�¼ 1.45 0.999 0.999 0.999 0.999 0.999 0.999 0.978

�¼ 1.50 1.000 0.999 0.999 0.999 0.999 0.999 0.991

Table 4. Probabilities of reaching the threshold h¼ 18 for the CUSUM

algorithm: change in variance.

T¼ 50 T¼ 100 T¼ 200 T¼ 300 T¼ 400 T¼ 500 T¼ 600

�¼ 1.05 0.019 0.129 0.391 0.580 0.709 0.798 0.859

�¼ 1.10 0.026 0.154 0.429 0.620 0.746 0.830 0.886

�¼ 1.15 0.033 0.178 0.466 0.657 0.776 0.854 0.908

�¼ 1.20 0.044 0.203 0.501 0.693 0.807 0.877 0.929

�¼ 1.25 0.055 0.231 0.540 0.726 0.834 0.899 0.943

�¼ 1.30 0.067 0.259 0.571 0.756 0.858 0.918 0.955

�¼ 1.35 0.080 0.289 0.603 0.785 0.878 0.934 0.965

�¼ 1.40 0.096 0.319 0.633 0.808 0.895 0.946 0.973

�¼ 1.45 0.109 0.347 0.664 0.834 0.912 0.957 0.978

�¼ 1.50 0.124 0.373 0.695 0.857 0.927 0.966 0.984
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for this problem is exactly the moving sum of squares; so the result is not
surprising.

8. THE ERROR PROBABILITIES AT

FIXED ITERATION

Denote

S ¼
XM
i¼1

x2i , S 0
¼
XM
i¼1

xi,

and compare S and S 0 when xi are i.i.d. normal random variables
(xi � Nða, �2Þ). For fixed iteration number S is the detection statistic
appearing as a particular case of SSA-based algorithm for Q ¼ 1:

Dn, p, pþ1 ¼
XM
i¼1

x2nþi

(in this section we drop the group I out of the subscript D since we focus
here on the issues that are irrelevant to I ). S 0

¼
PM

i¼1 xi is related to the
CUSUM test Eq. (29).

Figure 11. Power functions for the CUSUM test: change in variance, T ¼ 100.
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The moments of the random variables S and S 0 can be easily
computed:

ES 0
¼Ma, varðS 0

Þ¼M�2; ES¼Mða2þ�2Þ, varðSÞ¼2M�2ð2a2þ�2Þ:

In this section we compare the quality of the tests based on the statistics S
and S 0 evaluated at a fixed time moment n for the change-point model
(27)–(28) with normal i.i.d. noise.

8.1. Testing a Simple Hypothesis Against a Simple

Alternative

Let us consider a simple auxiliary problem of testing between two
simple hypotheses. Specifically, consider the problem of testing the
hypothesis

H0 : � ¼ �0 � ’0
x

�0

 �
,

(here we have E�0 ¼ 0, var �0 ¼ �20, �0 ¼ �0�0 and �0 � ’0) against the
alternative

H1 : � ¼ �1 � ’1
x� �

�1

 �

(where E�1 ¼ � � 0, var �1 ¼ �21, �1 ¼ �þ �1�1, �1 � ’1). Note that
E�0 ¼ E�1 ¼ 0 and var �0 ¼ var �1 ¼ 1.

The criterion and the error probability of type I (the probability of
false alarm) are

� <>H0

H1
h ¼ �0 t
,

ð30Þ


I ¼ Prfreject H0 jH0g

¼ Prf�0 � �0t
g ¼ 1� Prf�0 < t
g ¼ 1� F0ðt
Þ ¼ 
,

where t
 is the ð1� 
Þ -quantile of the null distribution:

F0ðt
Þ ¼

Z t


�1

’0ðtÞ dt ¼ 1� 
:
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The error probability of type II, the probability of missing the signal, is


II ¼ Prfaccept H0 jH1g ¼ Prf�1 < �0t
g ¼ Pr �1 <
�0t
 � �

�1

� �
:

Thus,


II ¼ F1

�0t
 � �

�1

 �
, ð31Þ

where F1ðtÞ is the c.d.f. related to ’1ðtÞ. The power function of the
criterion is

� ¼ �ð�, �1Þ ¼ 1� 
II ¼ 1� F1

�0t
 � �

�1

 �
:

8.2. Approximation of the Error Probabilities

(Change in Mean)

Let us apply the formulae of the previous section to the statistic S 0.
Here �0 and �1 are �0 ¼ �1 ¼

ffiffiffiffiffi
M

p
�, � ¼ Ma and the distributions are

normal. Thus, we have the hypotheses:

H0 : S
0
� N 0,M�2

� �
,

H1 : S
0
� N Ma,M�2

� �
:

The criterion is

S 0
6

H0

H1
h0 ¼

ffiffiffiffiffi
M

p
� t
,

where t
 is the ð1� 
Þ-quantile of the standard normal distribution:

�ðt
Þ ¼
1ffiffiffiffiffiffi
2�

p

Z t


�1

e�ðt2=2Þ dt ¼ 1� 
, ð32Þ

and �ðxÞ is the c.d.f. of the standard normal distribution. The error
probability of type II is and the power function of the test are


II ¼ � t
 �
a
ffiffiffiffiffi
M

p

�

 �
, � ¼ �ðaÞ ¼ 1�� t
 �

a
ffiffiffiffiffi
M

p

�

 �
: ð33Þ

Consider the statistic

� ¼
1

�2
S �M ¼

XM
i¼1

x2i
�2

 !
�M:
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Asymptotically, whenM ! 1, for the statistic � ¼ ð1=�2ÞS �M we have
the hypotheses:

H0 : � � N 0, 2Mð Þ,

H1 : � � N Ma2

�2
, 2M 2a2

�2
þ 1

� �� �
:

The criterion is

� <>H0

H1
h ¼

ffiffiffiffiffiffiffiffi
2M

p
t
,

where t
 is the ð1� 
Þ-quantile of the standard normal distribution �ðxÞ
(see Eq. (32)). Thus, the error probability of type II (using formula (31))
is:


II ¼ �

ffiffiffi
2

p
�2t
 �

ffiffiffiffiffi
M

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2�2 þ 2�4
p

 !

and the power function is:

�ðaÞ ¼ 1��

ffiffiffi
2

p
�2t
 �

ffiffiffiffiffi
M

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2�2 þ 2�4
p

 !
: ð34Þ

Figure 12 illustrates the behaviour of the power functions (33) and (34)
for these two tests with M ¼ 100, � ¼ 1 and t
 ¼ 1:2815, that corre-
sponds to the 0.9-quantile of the standard normal distribution.

Clearly, the S 0 -based test is the best (it is the optimal likelihood ratio
test). The power reduces quite visibly, see Fig. 12. Of course, application
of the test based on S further reduces the power: the S-based test is
approximately 3 times worse than the optimal S 0 -based test; that is,
one needs to have about 3k observations to achieve, for the fixed signifi-
cance level, the same power with the S-based test as we get for k observa-
tions for S 0 -based test. These conclusions are in agreement with the
conclusions of Secs. 7.1–7.2, where the comparisons concerning the
same tests, but considered as sequential ones, are made.

8.3. Approximation of the Error Probabilities

(Change in Variance)

Consider now the situation when a ¼ 0 for both hypotheses but
�0 ¼ 1 and �1 ¼ �. Then for the statistic S 0 we have the hypotheses:

H0 : S
0
� N 0,Mð Þ,

H1 : S
0
� N 0,M�2

� �
:
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The criterion is

S 0 <>H0

H1
h0 ¼

ffiffiffiffiffi
M

p
t
,

ð35Þ

where t
 is defined in Eq. (32). The power function of the test is

� ¼ �ð�Þ ¼ 1��
t

�

� �
: ð36Þ

For a two-sided test S 0
�� �� <>H0

H1
h00 ¼

ffiffiffiffiffi
M

p
t
=2

the power function is

� ¼ �ð�Þ ¼ 2�
t
=2

�

 �
: ð37Þ

Asymptotically (as M ! 1), for the statistic � ¼ S �M the hypotheses
are:

H0 : � � N 0, 2Mð Þ,

H1 : � � N Mð�2 � 1Þ, 2M�4
� �

:

Using formulae (30)–(31) we get the criterion

� <>H0

H1
h ¼

ffiffiffiffiffiffiffiffi
2M

p
t
;

Figure 12. Powers of the tests based on S and S0 as functions of a (change

in mean).
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the power function is

�ð�Þ ¼ 1��
t

�2

�

ffiffiffiffiffi
M

2

r
�2 � 1

�2

 !
: ð38Þ

Figure 13 illustrates the behaviour of the power functions (36)–(38) for
these tests with M ¼ 100 and 
 ¼ 0:1. The power of the one-sided test
Eq. (35) converges to 0.5. The two-sided test reaches the value 1 but very
slowly. In contrast, the power of the test based on S in this case reaches
the maximum value 1 quite fast. The numerical results presented in
Sec. 7.3 are in full agreement with the theoretical results here.
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